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Abstract
Song generation models seek to produce audio
recordings with vocals and instrumental accom-
paniment from user-provided lyrics and textual
descriptions. While end-to-end approaches yield
compelling results, they demand vast training data
and computational resources. In this paper, we
demonstrate that a compositional approach can
make song generation far more data-efficient by
decomposing the task into three sequential sub-
tasks: melody composition, singing voice syn-
thesis, and accompaniment generation. Although
prior work exists for each sub-task, we show that
naı̈vely chaining off-the-shelf models yields sub-
optimal outcomes. Instead, these components
must be re-engineered with song generation in
mind. To this end, we introduce MIDI-informed
singing accompaniment generation—a novel tech-
nique unexplored in prior literature—that condi-
tions accompaniment on MIDI representations
of vocal melody, empirically boosting rhythmic
and harmonic consistency between singing and
instrumentation. By integrating pre-existing mod-
els with our newly trained components (requiring
only 6k hours of audio data on a single RTX 3090
GPU), our pipeline achieves perceptual quality on
par with leading end-to-end open-source models,
while offering advantages in training efficiency,
licensed singing voices from professional artists,
and editable intermediates. We provide audio de-
mos and will open-source our model at https:
//composerflow.github.io/web/.

1. Introduction
Traditional song production is a staged, collaborative work-
flow that progresses from songwriting (lyrics, melody,
form), arrangement, multitrack recording, editing, mix-
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ing, and mastering. Each stage depends on specialized
expertise—producers, topliners, instrumentalists, and engi-
neers—and tight iterative feedback in a DAW, where deci-
sions about key, tempo, harmony, vocal delivery, and sound
design are refined across multiple passes. While this pro-
cess is flexible and quality-driven, it is time- and resource-
intensive; revisions at any stage often cascade into down-
stream rework. Producers preserve editability by saving
stems and session states, yet precisely reproducing changes
remains laborious. This conventional pipeline sets a high
bar for control and fidelity—highlighting an opportunity
for computational systems that retain its editability while
reducing cost and turnaround.

Recent advances in large generative models have led to
commercial systems (e.g., Suno (2025)) and emerging open-
source models (Yuan et al., 2025; Liu et al., 2025b; Ning
et al., 2025; Gong et al., 2025; Yang et al., 2025; Lei et al.,
2025; Liu et al., 2025a) that demonstrate high-quality, con-
venient song generation. Diverging from the conventional
studio workflow, these models accept lyrics and textual de-
scriptions and produce songs in an end-to-end manner. How-
ever, this monolithic approach presents several challenges:
(i) the lack of interpretable and editable intermediates makes
refining unsatisfactory outputs difficult; (ii) directly learn-
ing a mapping from text to audio is notoriously data- and
compute-hungry; and (iii) vocals may misalign with the
lyrics and exhibit unnatural timbre.

A compelling, yet currently under-explored, alternative to
these end-to-end systems is the compositional approach,
which leverages a sequence of specialized component mod-
els to construct the final audio. Between the initial user input
(lyrics/descriptions) and the final target audio, we identify
three critical intermediate outputs: the vocal MIDI score
(specifying pitch and duration for each syllable), the singing
voice audio (rendering the melody and lyrics), and the in-
strumental accompaniment audio (forming the complete
musical track). Song generation can thereby be decomposed
into three sub-tasks: melody composition, singing voice
synthesis (SVS), and singing accompaniment generation
(SAG), each handled by a dedicated model. This modu-
larity offers practical benefits, including editability of the
intermediate stages (e.g., modifying the vocal MIDI score)
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System Data (hrs) GPUs

YuE 650K 16× H800
DiffRhythm 60K 8× Ascend 910B
ACE-Step 100K 120× A100
SongBloom 100K 16× A100
JAM 54K 8× H100
Levo 110K 8× A100
Ours 6K 1× 3090

Table 1. Comparison of the proposed compositional pipeline with
existing open-source, end-to-end song generation models in terms
of training data and compute.

and substantially reduced training costs for each component
model compared to massive monolithic architectures.

While the compositional concept is not new, one might
assume a functional system could be created by chaining
off-the-shelf component models. Our literature review re-
veals two discrepancies that challenge this: first, there is
little empirical data directly comparing the performance
and resource efficiency of compositional methods against
prevailing end-to-end architectures. Second, prior work
treats these components in isolation, failing to exploit their
interdependencies. We assert that achieving optimal data
efficiency and perceptual quality requires more than simple
concatenation—the components must be re-designed and
integrated within a tightly-coupled pipeline.

Our core technical contribution is the introduction of MIDI-
informed singing accompaniment generation (MIDI-SAG),
a novel cross-stage conditioning mechanism previously un-
explored. Existing (non-informed) accompaniment genera-
tion models (Donahue et al., 2023; Chen et al., 2024; Trinh
et al., 2024) rely solely on the raw vocal audio as model
input. In contrast, we exploit the fact that the underlying
vocal melody is already available in a MIDI representation
from the preceding stages, and use it as an additional condi-
tion for the accompaniment generator. Doing so boosts the
rhythmic consistency between the singing and the accompa-
niment, as we can more easily trace the beats and downbeats
from the MIDI input than from the vocal audio. Moreover,
we can also improve harmonic consistency between vocal
and backing by further integrating a melody harmonization
module (Yi et al., 2022) that generates the chord progression
that the accompaniment has to follow—this chord condition
is not available directly from the vocal audio.

Besides, we address a practical limitation where conven-
tional SAG models implicitly assume continuous vocal in-
put. This assumption fails in real-world song generation,
where the accompaniment component must generate the in-
strumental sections (e.g., intro, bridge, outro) despite the ab-
sence of vocal condition. While this challenge of structural
completeness is naturally handled by end-to-end models, it
presents a key concern for our compositional pipeline. We

address this by leveraging the full-song rhythm, chord struc-
ture, and the inpainting and outpainting capabilities of latent
diffusion (Tsai et al., 2025), ensuring seamless structural
integrity throughout the generated song.

While the proposed idea is general, in our implementation
we leverage the off-the-shelf model CSL-L2M (Chai &
Wang, 2025) for melody composition, and train the SVS
and SAG components on our own, as illustrated in Fig-
ure 1. For SVS, we adopt the FastSpeech architecture (Ren
et al., 2020) with 10 hours of audio from two licensed pro-
fessional singers. For MIDI-SAG, we curate 6k hours of
pop song recordings, and adopt the approach of MuseC-
ontrolLite (Tsai et al., 2025) to add time-varying controls
(e.g., to handle the conditions from the MIDI) to Stable
Audio Open (Evans et al., 2025). Model training are all
accomplished using a single RTX 3090 GPU. The proposed
pipeline employs dramatically fewer training resources com-
pared to prevailing open-source architectures (see Table 1),
yet our experiments demonstrate that it achieves compara-
ble perceptual quality, while offering advantages in the use
of licensed singing voices, better lyrics-to-vocal alignment,
and editable intermediates. We provide extensive audio
samples on our demo page, comparing our model’s results
against others and showcasing editability at different stages
of the pipeline. We commit to open-sourcing our model
upon publication.

2. Related Work
Musical audio generation has seen rapid progress in recent
years. Specifically, text-to-music (TTM) generation mod-
els, such as (Agostinelli et al., 2023; Copet et al., 2024;
Liu et al., 2024; Tsai et al., 2024; Evans et al., 2025; Lee
et al., 2025) primarily focus on generating instrumental mu-
sic from textual descriptions. In contrast, lyrics-to-song
generation (or “song generation”) models take lyrics as
an additional input, aiming to produce full musical audio
encompassing both singing vocals and instrumental accom-
paniment. OpenAI’s Transformer-based Jukebox (Dhariwal
et al., 2020) represents an early exemplar of this paradigm,
followed by contemporaneous commercial systems such
as Suno (2025), and a subsequent proliferation of open-
source models, including Transformer-based ones such as
YuE (Yuan et al., 2025) and Levo (Lei et al., 2025), and
diffusion-based ones such as DiffRhythm (Ning et al., 2025),
ACE-Step (Gong et al., 2025), and SongBloom (Yang et al.,
2025). While these end-to-end approaches yield compelling
results, their reliance on vast datasets (cf. Table 1) and
extremely deep, non-modular architectures results in two
constraints relevant to our work: high training cost, and
a lack of interpretable or editable intermediate representa-
tions. These constraints motivate our investigation into a
more resource-efficient, compositional alternative.

2



Submission and Formatting Instructions for ICML 2026

Figure 1. Model overview. The proposed pipeline begins with lyrics and proceeds through lyrics-to-melody generation (through
CSL-L2M), singing voice synthesis (SVS; through FastSpeech), melody harmonization (through Accomontage2), and the proposed
MIDI-informed singing accompaniment generation (MIDI-SAG; through modifying MuseControlLite).

Long before the emergence of end-to-end song genera-
tion, extensive research existed for each sub-task within
the compositional pipeline. This includes work on lyrics-
to-melody generation (Yu et al., 2021; Sheng et al., 2021;
Ju et al., 2021), SVS (Lu et al., 2020; Chen et al., 2020;
Liu et al., 2022), and SAG (Donahue et al., 2023). How-
ever, most prior work tackles these sub-tasks in isolation,
without implementing and comprehensively evaluating a
unified, full-scale song generation pipeline. For instance,
Melodist (Hong et al., 2024) focuses on integrating SVS and
SAG while assuming the melody and lyrics are pre-supplied,
and SongComposer (Ding et al., 2025) concentrates mainly
on lyrics-to-melody generation. Although models address-
ing these individual sub-tasks could theoretically be naı̈vely
cascaded to realize a compositional song generation sys-
tem, the performance, coherence, and efficiency of such an
approach remain unexplored and unevaluated.

To our knowledge, existing SAG models (Donahue et al.,
2023; Chen et al., 2024; Trinh et al., 2024) are designed
for general applicability and solely condition on the raw
vocal audio input, without assuming the availability of the
underlying melody MIDI. This constraint presents a sub-
optimality from the perspective of a compositional pipeline.
Besides the MIDI-SAG idea, we also address the structural
completeness issue—the need to generate musically relevant
transitions and standalone instrumental passages guided by
the broader context—which has not been tackled before.

3. Compositional Song Generation Framework
Formally, a compositional pipeline P for song generation
sequentially maps user input (lyrics L and description D,

both of which are sequences of words) to the final audio
A (a waveform encompassing vocal and backing) through
three distinct, modular stages: P = T1 ◦ T2 ◦ T3.

{L,D} T1−→ M
T2−→ V

T3−→ A , (1)

where T1, T2, and T3 stand for the sub-tasks lyrics-to-
melody generation, SVS, and (MIDI-)SAG, and M and V
represent the intermediate outputs, the vocal melody MIDI
and the vocal-only audio.

Conventionally, SVS takes L and M as input and generates
V , while SAG (Donahue et al., 2023) takes the vocal audio
V alone as input and generates A (i.e., V → A). In contrast,
the proposed MIDI-SAG exploits the data coupling among
all sub-tasks and learns the mapping {D,M, V } → A.

Moreover, for stronger harmonic coherence between the
vocal and backing, we insert an additional sub-task “melody
harmonization” (T4), that takes the symbolic vocal melody
M as input and generates a symbolic chord progression
sequence C (i.e., T4 : M → C) to guide the generation
of the accompaniment. In consequence, our MIDI-SAG
actually learns {D,M,C, V } → A.

In what follows, we describe the core innovation MIDI-
SAG (T3) in greater details, and only provide high-level
description for the others.

3.1. Lyrics-to-Melody Generation (T1) and Singing
Voice Synthesis (T2)

We assume that the user has provided a full-song, sentence-
by-sentence lyrics with structural indicators that divide the
lyrics into sections (e.g., intro, verse, and chorus), but not
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Figure 2. Illustration of conventional SAG versus MIDI-SAG; see
Table 2 for empirical data.

sentence-level timestamps as required by some existing mod-
els such as DiffRhythm (Ning et al., 2025). Given the lyrics
L, a lyrics-to-melody generation model (T1) generates a se-
quence of monophonic musical notes in a symbolic, MIDI-
like representation M specifying the pitch and duration for
each syllable in the lyrics. The task is challenging because
lyrics and melody are only weakly correlated, but there
are established models that we can leverage (e.g., (Chai &
Wang, 2025; Ding et al., 2025)).

We note that melody composition is primarily implicitly
performed by end-to-end song generation models, so there is
no intermediate representation of the vocal melody M that is
interpretable and editable. In contrast, in our compositional
pipeline, M is the key piece of structured data that carries
timing and pitch information required in all downstream
sub-tasks T2, T3 and T4.

SVS (T2) is an established task leveraged within our compo-
sitional pipeline to address the common end-to-end issues
of unnatural vocal timbre and high word error rate (Liu
et al., 2025a). In our framework, any suitable SVS model
can be used to render the vocal audio V from the lyrics L
and melody M . Importantly, the melody M from T1 has
to mark instrumental sections (e.g., intros) where the vocal
output V must be silent, ensuring synchronization with the
broader song structure.

3.2. MIDI-informed Singing Accompaniment
Generation (MIDI-SAG) (T3)

Given the vocal V , an SAG model generates the correspond-
ing accompaniment that is supposedly rhythmically and har-
monically coherent with the vocal, leading to the final mix A.
This suggests that the beat and downbeat times of the vocal
and back tracks have to be precisely synchronized, and that
the vocal melody line must align with the backing track’s
underlying harmonic progression. Existing SAG models
attempt to achieve this coherence in an end-to-end fashion
(see Figure 2(a)), typically relying on massive training data
(e.g., 46k hours of music for SingSong (Donahue et al.,
2023) and 300k hours for FastSAG (Chen et al., 2024)).
However, our pilot studies showed that this approach yields
insufficient coherence within our resource-constrained sce-
nario (i.e., 6k hours of training data and one 3090 GPU),
necessitating a form of explicit structural conditioning.

Our initial idea, as illustrated in Figure 2(b), is to extract
the vocal pitch contour from the vocal audio V as melody
condition for harmonic improvement, and extract the vocal
beat and downbeat from the vocal audio V as rhythmic
condition. Yet, our pilot studies suggested that this approach
is unreliable (see Table 2 for empirical data), due to the fact
that beat and downbeat detection from pure singing audio
remains error-prone (Heydari et al., 2023).

The proposed MIDI-informed SAG directly exploits the
inherent data coupling within our compositional pipeline by
employing structural, time-varying conditions derived from
the symbolic vocal melody M (the output of T1) to guide the
accompaniment generation. As depicted in Figure 2(c), this
strategy offers two advantages over audio-based methods:

• Enhanced rhythmic consistency: We extract precise
beat and downbeat information readily available from
the symbolic melody M , rather than relying on error-
prone estimation from the vocal audio V . This foun-
dational step significantly improves the reliability and
accuracy of the rhythmic condition.

• Explicit harmonic guidance: We explicitly predict the
accompaniment’s chord progression C from the sym-
bolic vocal melody M via an off-the-shelf melody har-
monization model (Yi et al., 2022). This process gen-
erates an explicit harmonic condition C that accurately
reflects the intended structure (for both vocal and in-
strumental sections), thereby greatly improving the
accuracy of the harmonic guidance for the accompani-
ment generator.

Importantly, the structural information derived from MIDI-
SAG extends its benefits to the overall song architecture.
In addition to leveraging audio inpainting and outpainting
capabilities of diffusion models for smooth transitions at sec-
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tion boundaries, our accompaniment generator has explicit
rhythmic and harmonic conditions to follow even within the
instrumental sections, i.e., when the vocal is absent. This
ensures structural completeness throughout the entire com-
position, a guarantee that conventional SAG models cannot
provide.

Table 2 compares the empirical performance of the three
SAG settings discussed in Figure 2, based on the imple-
mentations that will be described in Section 4. This result
demonstrates the lack of rhythmic and harmonic consistency
between vocal and backing using either the conventional
SAG approach or the naı̈ve modification detecting beats and
downbeats directly from vocal audio.

Table 2. Rhythm and key alignment on a 200-song test set.

Model / Setting Rhythm F1 Key acc.
Conventional SAG (cf. Figure 2(a)) 0.64 0.55
Naı̈vely adapted SAG (cf. Figure 2(b)) 0.55 0.72
Proposed MIDI-SAG (cf. Figure 2(c)) 0.81 0.90

4. Implementation
4.1. Model Architecture and Training Data for Each

Sub-Task

As depicted in Figure 1, we employ two established external
models to generate key intermediate symbolic represen-
tations. For lyrics-to-melody generation (T1), we utilize
CSL-L2M (Chai & Wang, 2025). This model supports con-
ditioning on various attributes, including key, emotion, and
reference MIDI. We exploit all these conditions via curat-
ing a bank of 1,000 reference attribute sets, to ensure that
CSL-L2M produces reliable result. We also integrate Ac-
comontage2 (Yi et al., 2022) for melody harmonization (T4).
We keep CSL-L2M and AccoMontage2 fixed, and train only
the SVS and MIDI-SAG models. Please see the appendix
(Sections A.1.1 and A.1.2) for details.

We note that the selection of specific model architectures
throughout this paper is primarily for prototyping and vali-
dating the core idea of the compositional song generation
framework. In principle, any other suitable model architec-
ture could be used. However, the specific choices impose
practical constraints; for instance, as CSL-L2M currently
supports only Chinese lyrics, our implementation is conse-
quently focused on Mandarin singers in SVS component
and Mandarin pop for MIDI-SAG.

For SVS (T2), we train FastSpeech (Ren et al., 2020) from
scratch on an internal corpus totaling 10 hours from two
licensed singers (male/female), with aligned MIDI notes,
phoneme labels, and ground-truth melspectrograms. Train-
ing uses a single NVIDIA RTX 3090 for 24 hours. We then
fine-tune a Parallel WaveGAN vocoder (Yamamoto et al.,

2020) for one week on the same RTX 3090 to reconstruct
waveform audio from melspectrograms. See Section A.1.3
for more details.

We build our MIDI-SAG model (T3) based on fine-tuning
the state-of-the-art latent diffusion-based TTM model Stable
Audio Open (SAO) (Evans et al., 2025). SAO is naturally
suited for generating the instrumental backing as it does not
inherently synthesize singing voices. Our fine-tuning pro-
cedure is two-fold. First, we curate a set of 6,000 hours of
Mandarin pop to fine-tune it, following the data preparation
pipeline described in Section A.1.4. Second, we employ
the lightweight mechanisms of MuseControlLite (Tsai et al.,
2025) to add time-varying controls to SAO via adapters.
Following (Tsai & Yang, 2024), all time-varying conditions
are temporally interpolated to a common sequence length
and concatenated along the cross-attention feature dimen-
sion. MuseControlLite is trained using a single NVIDIA
RTX 3090 with an equivalent batch size of 108, running for
9 days.

The original MuseControlLite supports two types of
conditions—audio conditions that facilitates audio inpaint-
ing and outpainting, and attribute conditions for guiding
melody, loudness, and rhythm. To adapt it to our song gen-
eration pipeline, we implement the following changes. First,
to overcome the 47 s context limit of SAO, we revise and
extend the audio continuation strategy of Tsai et al. (2025)
to produce seamless long-form outputs. Second, unlike the
original MuseControlLite, which exclusively fine-tunes the
cross-attention layers, we additionally fine-tune selected
self-attention blocks within SAO. This yields stable con-
ditioning while allowing the partially unfrozen backbone
to learn smoother transitions at section boundaries (see Ta-
ble 8). Finally, we consider a richer set of time-varying
conditions from the vocal melody MIDI, as detailed below.

4.2. Conditions for MIDI-SAG during Training and
Inference Times

We consider a much more extensive set of controls than the
original MuseControlLite (Tsai et al., 2025) to overcome
the challenges presented in low-resource long-form song
generation. At training time, some conditions can be ex-
tracted from the accompaniment for preciseness. However,
at inference time, the conditions can only be computed from
the vocal audio or symbolic vocal melody. We provide the
details below and offer a summary in Table 7.

Vocal pitch contour. We first separate vocals and accompa-
niment with Mel-Band RoFormer (Wang et al., 2023), then
select prominent pitches via the top-4 constant-Q-transform
(CQT) method of Hou et al. (2025). During inference, we
extract vocal pitch contour from the SVS-generated singing.

Rhythm. Our pilot study shows that existing beat tracking
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models do not work well for pure vocal audio. For example,
BeatNet (Heydari et al., 2021) only obtains a Rhythm F1
score of 0.3449 according to our evaluation. Alternatively,
at training time, we use All-In-One (Kim & Nam, 2023)
to extract beat and downbeat timestamps from the backing
audio, converting them into binary indicator sequences of
shape (T, 1), where T is the number of time frames (1 if
an event occurs at a given frame, 0 otherwise). A Gaussian
filter is then applied to produce smooth “rhythm activation”
curves. During inference, when All-In-One cannot be ap-
plied to singing voice, we instead derive beat and downbeat
timings from the quantized MIDI generated by our lyrics-
to-melody model (CSL-L2M (Chai & Wang, 2025)), which
outputs melodies in 4/4 time.

Chord. Our preliminary experiments show that our SAG
generates unstable harmony and weak progressions with-
out the chord condition. To remedy this, at training time,
we apply a chord detector (Park et al., 2019) to the sepa-
rated backing track and encode the results as 12-bin chro-
magrams (pitch-class membership over time). During infer-
ence, chord sequences are provided by our melody harmo-
nization model AccoMontage2 (Yi et al., 2022).

Structure. We extract section labels and timestamps
with All-In-One (Kim & Nam, 2023), discarding truncated
start/end fragments and retaining intro, outro, break, bridge,
inst, solo, verse, chorus. Timestamps slice audio at section
boundaries; section-level captions are produced by an large
audio language model (LALM) AudioFlamingo3 (Goel
et al., 2025), and the section labels themselves are used as a
time-varying conditioning signal. To avoid abrupt changes,
we align boundaries with song structure transitions or down-
beats during both training and inference times.

Key. While chords convey strong local tonality, we include
a section-level key condition to capture broader tonal con-
text. We apply key-CNN (Schreiber & Müller, 2019) per
structure section, reflecting that key modulations often occur
at section boundaries.

Reference audio. We use similar audio conditions as
MuseControlLite to facilitate the use of inpainting and out-
painting techniques to create the instrumental sections. We
also introduce backward continuation: since intros lack
vocal pitch contour and slightly degrade conditioning qual-
ity, when the target slice begins with an intro, we replace
the reference with a verse section with a probability of
50% during training. During training, all songs are sliced
at section boundaries: each slice begins at Sstart

i , where
i ∈ {intro, verse, chorus, solo, inst, bridge, break, outro},
and ends at Sstart

i + 47. A 47-second window anchored
at Sstart

i may span multiple structural sections. We use
the audio from the first section as a reference and the time-
varying conditions mentioned above to train the model.

We use all these conditions in the proposed pipeline, as
illustrated in Figure 4 in the appendix. In our experiments,
we provide ablation studies examining the importance of
each condition.

4.3. Inference Process of the Proposed Pipeline

As shown in Figure 1, users provide lyrics with structure
tags, plus optional conditions (emotion and key). As de-
scribed in Section 3.1, the system is conditioned on se-
lected suitable statistical musical attributes, structure, and
lyrics. The resulting melody and lyrics are then passed
to the SVS model to synthesize a singing voice. Because
the pitch contour of a quantized MIDI melody can deviate
from the realized vocal pitch, we extract the vocal pitch
contour from the synthesized singing voice and use it as a
condition. In parallel, AccoMontage2 (Yi et al., 2022) per-
forms melody harmonization to produce a chord progression
with the generated vocal MIDI track. With the assembled
controls—vocal melody, chords, rhythm (from MIDI times-
tamps), key (user-specified or inferred from the generated
MIDI), and structure—MuseControlLite generates the back-
ing track. Although MuseControlLite generates at most
47 s per pass, we extend duration via the audio-continuation
procedure in Section 3.2: we first generate the verse without
any audio condition, then generate the intro. Subsequent
windows condition on the previously generated audio (an-
chored at the verse) and proceed section by section until the
outro. Finally, we mix the completed backing track with
the synthesized singing voice by summation and apply peak
normalization to avoid clipping.

5. Experimental Setup
5.1. Baselines & Evaluation Datasets

For comparison, we select several representative baselines:
Suno v4.5 (Suno, 2025), DiffRhythm 1.2-base (Ning et al.,
2025), ACE-Step (Gong et al., 2025), and Levo (Lei et al.,
2025). We exclude the following models from evaluation
for fairness and comparability: SongGen (Liu et al., 2025b),
whose outputs are limited to 30 s; SongBloom (Yang et al.,
2025), which requires a 10 s reference audio as a style
prompt (incompatible with our reference-free setting); and
JAM (Liu et al., 2025a), which uses phoneme-level timing
supervision not available to other systems considered here.

All baselines and our model are evaluated on a 200-sample
test set curated for this study. Each sample is automatically
constructed via ChatGPT-5 system prompts that specify both
lyrics and text prompts; the lyrics include one verse, one cho-
rus, and one outro. We target 90–120 s intro–verse–chorus–
outro forms, avoiding full-length pieces to mitigate listener
fatigue. To accommodate heterogeneous model inputs,
we also provide per-sample metadata (timestamps, timbre,
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Table 3. Objective evaluation for style alignment, inference speed,
and phonme error rate.

Model CLAP ↑ PER ↓
Suno v4.5 (Suno, 2025) 0.210 0.290
ACE-Step (Gong et al., 2025) 0.184 0.238
DiffRhythm (Ning et al., 2025) 0.187 0.325
Levo (Lei et al., 2025) 0.081 0.617
Ours 0.184 0.213

genre, instruments) as separate annotations. For example,
some systems (e.g., LeVo (Lei et al., 2025)) prefer tag-style
textual descriptions, while others (e.g., DiffRhythm (Ning
et al., 2025)) expect lyrics annotated with timestamps. We
reformat inputs to match each model’s specification while
keeping the semantic content consistent across systems.

5.2. Objective metrics

To comprehensively evaluate the generated songs, we em-
ploy a set of objective metrics that capture different aspects
of alignment and fidelity. These metrics quantify how well
the outputs follow the intended textual and lyrical conditions.
In addition, to better approximate human preferences, we
further adopt automatic evaluation tools designed to reflect
human-like judgments of aesthetics and production quality.

Lyrics Alignment: We employed Whisper ASR (Radford
et al., 2022) to transcribe the generated vocals and compared
the transcriptions with the ground-truth lyrics. Alignment
quality is measured using the phoneme error rate (PER).
We first convert both the predicted and reference texts into
their phoneme representations. Then, PER is computed as
PER = S+D+I

N , where S, D, and I denote substitutions,
deletions, and insertions, respectively. PER is the lower and
the closer to 0 the better.

Style Alignment: We utilized CLAP (Wu et al., 2024b) to
compute the cosine similarity between audio embeddings
of the generated music and embeddings of the text prompts,
quantifying adherence to the intended global style.

Aesthetics Evaluation: We used Audiobox-
Aesthetics (Tjandra et al., 2025), to provide an automatic
aesthetics qualification of the generated songs, capturing
aspects such as clarity, richness, and technical fidelity.
Specifically, Audiobox reports four sub-scores: Coherence
(CE), Cultural Understanding (CU), Production Complexity
(PC), and Production Quality (PQ).

SongEval (Yao et al., 2025): A recently released evaluation
tool specifically designed for songs, used to measure struc-
tural clarity, memorability, musical coherence, and overall
musicality.

Controllability: To evaluate whether MIDI-SAG success-
fully aligns with the given conditions, we extract rhythm,
chord, and key features from the generated backing audio
using the same procedure as in training, except that we use
BeatNet (Heydari et al., 2021) instead of All-in-one (Kim
& Nam, 2023) to probe whether using different beat detec-
tion methods yield consistent results. Following Wu et al.
(2024a), we use the F1 score to evaluate rhythm alignment,
where the given timestamps and the detected timestamps
are considered aligned if they differ by less than 70 millisec-
onds. For the chord condition, we also use the F1 score,
computed between the chromagrams of the reference and
generated audio. Key accuracy is defined straightforwardly:
if the given key and the detected key match in both pitch
class and mode (major/minor), the prediction is deemed
correct.

5.3. Subjective metrics

We conducted a mean opinion score (MOS)-style listening
test with 33 anonymous participants recruited from the Inter-
net, including self-reported music experts and non-experts.
Each participant listened to 10 generated samples (5 models
× 2 pairs of prompt-lyrics) and rated them on a scale of 1–5
(the higher the better) across the following five dimensions:

Overall Preference: Overall liking of the song.

Lyrics Adherence: Whether the vocal content matches the
given lyrics.

Musicality: Perceived musical quality, including melody
and harmony.

Voice Naturalness: Naturalness of the singing voice.

Song Structure Clarity: Whether the song structure clearly
follows the provided lyrical format.

This evaluation design allows us to simultaneously assess
text–music alignment, lyric–vocal alignment, and overall
musical quality across systems.

6. Experimental Results
6.1. Performance comparison with existing models

Table 3 presents the CLAP scores and PER of the evaluated
models. We see that our model attains comparable CLAP
scores as most open-source models, whereas the closed-
source commercial system Suno has the highest CLAP,
demonstrating superior text–audio alignment. In terms of
PER, our model attains the lowest PER, slightly outperform-
ing ACE-Step and Suno. We attribute this to the use of an
dedicated SVS model capable of generating clear and tem-
porally well-aligned vocals in our compositional approach.

Table 4 shows that, on Audiobox-Aesthetics, DiffRhythm
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Table 4. Objective evaluation using Audiobox-Aesthetics and SongEval; the higher the better).

2*Model Audiobox SongEval

CE CU PC PQ Coherence Musicality Memorability Clarity Naturalness

Suno v4.5 7.339 7.766 5.333 8.036 4.198 4.011 4.174 4.034 3.939
ACE-Step 7.209 7.642 5.820 7.948 3.449 3.214 3.203 3.216 3.162
DiffRhythm 7.530 7.791 6.336 8.189 3.740 3.419 3.595 3.512 3.354
Levo 7.565 7.674 4.993 8.295 3.392 3.272 3.198 3.265 3.155
Ours 7.590 7.712 6.294 8.240 3.653 3.397 3.442 3.440 3.260

Table 5. Subjective evaluation results across models; higher values
indicate better performance. Bold denotes the highest value, and
underlining indicates the second highest.

Model Overall
Preference

Lyrics
Adherence Musicality Voice

Naturalness
Structure

Clarity

Suno v4.5 4.091 4.076 4.091 3.909 3.970
ACE-Step 2.803 3.455 3.045 2.561 3.045
DiffRhythm 2.409 2.788 2.758 2.561 2.530
LeVo 2.212 2.045 2.500 2.288 2.394
Ours 2.530 3.348 2.561 2.924 2.409

Table 6. Ablation study on conditioning signals.

Setting Chord F1 Key Acc Rhythm F1

w/ all conditions 0.9006 0.79 0.8339
w/o chord 0.3908 0.21 0.7870
w/o key 0.9027 0.78 0.8535
w/o rhythm 0.8914 0.79 0.4279
w/o structure 0.8957 0.79 0.8317
w/o audio 0.9027 0.84 0.8442
w/o vocal pitch contour 0.5930 0.69 0.4319

scores the highest overall, with other models clustered
closely behind. On the other hand, SongEval indicates that
Suno is the strongest across perspectives, and the SongEval
metrics are highly correlated to each other. Our model is
slightly weaker than DiffRhythm but surpasses ACE-Step
and LeVo.

Table 5 shows the subjective evaluation result. Consistent
with the SongEval metrics, Suno outperforms all systems,
highlighting a sizable gap between closed- and open-source
models. Among open-source baselines, our system ranks
above DiffRhythm and LeVo in Overall Preference, but
trails behind ACE-Step. For Lyrics Adherence, our scores
are on par with ACE-Step and exceed other open-source
models; this partially diverges from the objective Align-
ment metric. We hypothesize that participants’ adherence
judgments are influenced by other perceptual factors, even
though an SVS front-end should strongly align vocals to the
provided lyrics. In Musicality and Song Structure Clarity,
our model surpasses LeVo but falls short of the remaining
systems. Notably, we obtain the best Voice Naturalness

among open-source methods, underscoring the benefit of
using an SVS module within the compositional song gener-
ation pipeline.

6.2. Ablation Study

Tables 4 and 6 present an ablation study clarifying the con-
tribution of each conditioning signal to MIDI-SAG perfor-
mance. We observe that condition alignment and SongEval
scores are highest when MIDI-SAG is conditioned only on
non-audio inputs, where the model is freed from reconciling
with ambiguous reference audio, allowing it to strictly fol-
low the remaining time-varying conditions. However, this
simplification can introduce acoustic abruptness, which is
easily detectable by listeners despite high SongEval scores.
Further analysis reveals redundancy in harmonic conditions:
removing the explicit key condition has negligible impact on
key accuracy, and removing the chord condition leaves both
chord and key alignment metrics high. This suggests that
the explicit key condition is likely redundant. Conversely,
excluding the vocal pitch contour leads to a performance
drop in Chord F1, key accuracy, and rhythm F1, indicating
that SAG relies heavily on this condition. Finally, Table 8
demonstrates partially unfreezing self-attention layers of
SAO improves result.

7. Limitations
Although our approach offers a promising alternative for
song generation, several limitations remain. First, melodies
produced by CSL-L2M (Chai & Wang, 2025) tend to de-
grade beyond ∼ 120 s, likely because most of its training
examples follow an intro–verse–chorus–outro form and
are only ∼ 90–120 s long, complicating full-length gen-
eration. Second, our MuseControlLite-based SAG model
often yields weaker intros than end-to-end baselines, leaving
room for improvement.

8. Conclusion
In this paper, we proposed a novel MIDI-informed SAG ap-
proach and a novel compositional song generation pipeline,
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demonstrating that combining three lightweight modules
(CSL-L2M (Chai & Wang, 2025), SVS, and Accomon-
tage2 (Yi et al., 2022)) with a text-to-music model (i.e.,
Stable Audio Open (Evans et al., 2025)) fine-tuned to take
MIDI conditions can effectively enable song generation
while requiring significantly less training data and computa-
tional resources. Moreover, our model allows users to freely
edit intermediate results—such as melodies and chords in
MIDI format—and provides separate vocal and backing
tracks for greater flexibility. Importantly, the modular de-
sign means that components can be replaced with newer
models (e.g., more advanced SVS systems), as long as they
satisfy the pipeline’s input and output requirements. There-
fore, the proposed compositional pipeline should represent
a flexible model design approach. We evaluated our model
through both objective and subjective experiments and ob-
served comparable results to state-of-the-art open-source
systems. These findings suggest that generating high-quality
songs does not necessarily require massive datasets, exces-
sive computational power, or high energy consumption.
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A. Appendix
A.1. Implementation Details

A.1.1. IMPLEMENTATION DETAILS ON LYRICS-TO-MELODY GENERATION

We adopt the state-of-the-art CSL-L2M model (Chai & Wang, 2025) to map input Chinese lyrics to a vocal MIDI score.
CSL-L2M is a Transformer decoder with an in-attention mechanism (Wu & Yang, 2023) that supports fine-grained lyric–
melody controls. We condition on the global key1 and emotion2, as well as sentence-level structure3 and statistical musical
attributes4 that strengthen lyric–melody coupling. The statistical attributes are extracted from a vocal MIDI track. Users
may specify emotion, key, and structure (the latter carried by the lyrics), and optionally provide a reference MIDI from
which we derive the statistical attributes. The model performs best when the reference vocal MIDI track and input lyrics
have similar section structure, line count, and per-line word counts.

To enable use without a user-provided MIDI, we curate a bank of 1,000 reference attribute sets. Given new lyrics, we score
each candidate using a weighted sum

P = 0.4Psent + 0.4Pprof + 0.2Pstruct,

where lower is better. Here, Psent penalizes differences in total line count (optionally rejecting candidates with fewer lines
than the target); Pprof is the mean absolute difference between per-line token counts—treating each visible Chinese character
as one token—after padding the shorter sequence with its median and scaling by the maximum observed token count; and
Pstruct compares section tags mapped to integers, counting position-wise mismatches and adding a penalty for extra sections,
normalized by the longer sequence length.

A.1.2. IMPLEMENTATION DETAILS ON MELODY HARMONIZATION

Because chord progressions are used as time-varying controls during training, inference must supply compatible chord
sequences. We harmonize the vocal MIDI score produced by CSL-L2M (Chai & Wang, 2025) using AccoMontage2 (Yi
et al., 2022). To provide an instrumental lead-in, we prepend a 4-bar intro without vocal and reuse (duplicate) the chord
sequence from the first 4 melodic bars to harmonize this intro. Melody harmonization supplies chord progression, enabling
the singing-accompaniment generator to produce coherent, musically appropriate harmony. If the automatically generated
chords are unsatisfactory, users may instead provide their own or partial edit the generated progression.

A.1.3. IMPLEMENTATION DETAILS ON SINGING VOICE SYNTHESIS

We add a MIDI-conditioning embedding that aligns each phoneme to its corresponding MIDI note. Before synthesis, we
compare the register of the vocal MIDI track to typical vocal ranges—male (lower) vs. female (higher)—and test octave
shifts ∆ ∈ {−12, 0,+12} to align the vocal MIDI track with each profile’s comfortable tessitura. We then choose the
(singer,∆) that keeps the most notes inside the target range while minimizing |∆|.

A.1.4. IMPLEMENTATION DETAILS ON SINGING ACCOMPANIMENT GENERATION

We curate a dataset to fine-tune Stable Audio Open by following the data preparation pipeline illustrated in Figure 3.
Specifically, it separates vocal and backing track (Wang et al., 2023), captions the audio (Goel et al., 2025), extracts
time-varying controls—chords (Park et al., 2019), rhythm (Kim & Nam, 2023), vocal pitch contour (Hou et al., 2025),
structure tags (Kim & Nam, 2023), and local key (Schreiber & Müller, 2019) to serve as conditioning signals. We fetch the
audio data of the Mandarin pop from the Internet, and keep it as an internal data for academic research purpose with no
intention to distribute it further.

112 major: C, D♭, D, E♭, E, F, F♯, G, A♭, A, B♭, B; 12 minor: c, c♯, d, d♯, e, f, f♯, g, g♯, a, b♭, b.
2Three emotions: Neutral, Positive, Negative.
3Five sections: Verse, Chorus, Insertion, Bridge, Outro.
412 attributes: pitch mean (PM), pitch variance (PV), pitch range (PR), direction of melodic motion (DMM), amount of arpeggiation

(AA), chromatic motion (CM), duration mean (DM), duration variance (DV), duration range (DR), prevalence of most common note
duration (MCD), note density (ND), fraction of lyric syllables to melody notes (Align).
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Figure 3. The data-preprocessing pipeline to curate data for fine-tuing Stable Audio Open to implement our MIDI-informed singing
accompaniment generation (MIDI-SAG) model.

Table 7. Conditioning signals used during training and inference for MIDI-SAG.

Feature Training Inference

Vocal pitch Vocal CQT top-4 (Hou et al., 2025) Vocal CQT top-4 (Hou et al., 2025)
Rhythm Allin1 (Kim & Nam, 2023) From generated vocal MIDI
Chord Chord detection (Park et al., 2019) Accomontage2 (Yi et al., 2022)
Structure Allin1

(Kim & Nam, 2023)
User-provided

Key Key CNN
(Schreiber & Müller, 2019)

User-provided or from vocal MIDI

Ref. audio Mask one structure; others as reference From previous song-structure segment

A.2. Additional Notes

To ensure that using Whisper is appropriate in our setting, we additionally compute the PER on real human singing from the
CPOP (Music Information Retrieval Evaluation eXchange (MIREX), 2018) dataset by comparing Whisper’s transcriptions
with the ground-truth lyrics. The resulting PER is 0.059, demonstrating that Whisper can effectively recognize singing
voice.

Moreover, we observe that, for short lyric inputs, Suno v4.5 tends to repeat lines, which would otherwise inflates the PER.
For a fair comparison, these repeated lines in the transcriptions are removed before computing the PER.
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Table 8. Modifying MuseControlLite for audio continuation

MuseControlLite (Tsai et al., 2025) FD↓ KL↓ CLAP↑ Smoothness value↑
w/ audio condition 111.58 0.2160 0.3622 –0.2734
w/ audio condition unfreeze self attention layers 109.62 0.1794 0.3961 –0.3529

Table 9. Per-module inference latency for generating a 90–120 seconds intro–verse–chorus–outro song. For the singing-accompaniment
stage, MuseControlLite (Tsai et al., 2025) is configured with 50 denoising steps.

Module Time (s)

Lyrics-to-Melody 10
Melody Harmonization 0.2
Singing Voice Synthesis 3
singing accompaniment generation 40

Figure 4. Equipping Stable-Audio Open with singing accompaniment generation and audio continuation abilities via MuseControlLite.
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Figure 5. The genre distribution of the curated training dataset for training MIDI-SAG.
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